

Alessandro Volta

X C PRI

1745 - 1827

Arc Flash

What is the purpose of an arc flash study?

 To determine the protective clothing requirements for persons working on live equipment

Living with what one has and minimize the risks

 Designing electrical safety into the power distribution design

Why Integrated Software?

We all love Microsoft (we own stock)?

- I can't find that NFPA book to do it by hand ?
- I lost my calculator?
- The boss wanted the PPEs yesterday?

Standards Related to Safety

NEC 110.16 NFPA 70E IEEE Std. 1584

Also we have OSHA &

The Occupational Health and Safety Act and its regulations

Electrical Hazards

Shock Flash Burns Blast Pressure

•NEC[®] 2002 Article 110.16

110.16 Flash Protection. Switchboards, panelboards, industrial control panels, and motor control centers in other than dwelling occupancies, that are likely to require examination, adjustment, servicing, or maintenance while energized, shall be field marked to warn qualified persons of potential electric arc flash hazards. The marking shall be located so as to be clearly visible to qualified persons before examination, adjustment, servicing, or maintenance of the equipment.

Reprinted from NEC® 2002

•NEC[®] 2005 Article 110.16

FPN No. 1: NFPA 70E-2004, Standard for Electrical Safety in the Workplace, provides assistance in determining severity of potential exposure, planning safe work practices, and selecting personal protective equipment.

FPN No. 2: ANSI Z535.4 – 1998, Product Safety Signs and Labels for application to products.

Reprinted from NEC[®] 2005

- Requirements for safe work practices
- Addresses hazards:
 - Shock
 - Arc Flash
- Requirements for shock and arc flash boundaries
- Requirements for personal protective equipment
- Incident Energy and flash boundary calculations (<1000V, 5kA-106kA)

130.3 Flash Hazard Analysis. A flash hazard analysis shall be done in order to protect personnel from the possibility of being injured by an arc flash. The analysis shall determine the Flash Protection Boundary and the personal protective equipment that people within the Flash Protection Boundary shall use. Requirements for safe work practices

NFPA 70E Standard for Electrical Safety Requirements for Employee Workplaces 2004 Edition

(B) Protective Clothing and Personal Protective Equipment for Application with a Flash Hazard Analysis. Where it has been determined that work will be performed within the Flash Protection Boundary by 130.3(A), the flash hazard analysis shall determine, and the employer shall document, the incident energy exposure of the worker (in calories per square centimeter). The incident energy exposure level shall be based on the working distance of the employee's face and chest areas from a prospective arc source for the specific task to be performed. Flame-resistant (FR) clothing and personal protective equipment (PPE) shall be used by the employee based on the incident energy exposure associated with the specific task. Recognizing that incident energy increases as the distance from the arc flash decreases, additional PPE shall be used for any parts of the body that are closer than the distance at which the incident energy was determined As an alternative, the PPE requirements of 130.7(C)(9) shall be permitted to be used in lieu of the detailed flash hazard analysis approach described in 130.3(A).

FPN: For information on estimating the incident energy, see Annex D.

IEEE Std 1584 - 2002

• Addresses Arc Flash Calculations:

Arcing Fault Incident energy Flash boundary

- Valid Ranges
 208 V to 15 kV
 700A to 106kA
 Gap 13mm to 153mm
- Out of Range
 Use Lee Equation

Arc Flash and Shock Hazard Appropriate PPE Required

24 inch Flash Hazard Boundary

- cal/cm² Flash Hazard at 18 inches
- **1DF PPE Level, 1 Layer 6 oz Nomex** ®, **Leather Gloves Faceshield**
- 480 VAC Shock Hazard when Cover is removed
 - **36 inch** Limited Approach
 - **12 inch Restricted Approach 500 V Class 00 Gloves**
 - **1 inch Prohibited Approach 500 V Class 00 Gloves**

Equipment Name:Slurry Pump Starter

Courtesy E.I. du Pont de Nemours & Co.

3

To do Arc Flash Evaluations

- Start with an accurate one line
- Have accurate one line component definitions
- Have accurate Short Circuit potentials
 - Have knowledge of the protective devices' opening times
 - An accurate description of the operation
 - And it is all kept up to date

Role of Integrated Software

- Provide a one-line and system model of the power system
- Run studies for sizing and analysis (studies are required for worker safety, protection of equipment, and reliable operation)

Studies (Examples)

- Load Analysis is used to verify that equipment is sized
 properly for continuous loads.
- Short Circuit Analysis is used to verify that equipment is sized properly to withstand and interrupt short circuits.
- Protective Device Coordination sets protective devices to allow normal system operation while protecting equipment from damage and workers from injury.
- Harmonic Analysis is used to minimize harmonic distortion and verify the equipment is sized properly to withstand harmonic current and voltage.
- Arc Flash Hazard Analysis is used to calculate the incident energy released when an arcing fault occurs.

Preparing to Work Safely What do we need to know or do?

- Documented Procedures
- Know Fault Current Calculations
- Know Safe Approach Distance
- Know Arcing Fault Clearing Time
- Know the Incident Energy Exposure Calculations
- Know Hazard Risk Category

Preparing to Work Safely What do we need to know or do?

Documented Procedures

- Job briefing (written work processes & procedures)
- Energized work permit
- Know Fault Current Calculations
- Know Safe Approach Distance
- Know Arcing Fault Clearing Time
- Know the Incident Energy Exposure Calculations
- Know Hazard Risk Category

Safe Work Practices

OSHA 1910.333 (a) (1) & NFPA 70E 130.1 not to work "hot" or "live" except when Employer can demonstrate:

- 1. De-energizing introduces additional or increased hazards
- 2. Infeasible due to equipment design or operational limitations

NFPA 70E - 2004

Appropriate safety-related work practices shall be determined before any person approaches exposed live parts within the Limited Approach Boundary by using both shock hazard analysis and flash hazard analysis.

NFPA 70E - 2004

A flash hazard analysis shall be done in order to protect personnel from the possibility of being injured by an arc flash. The analysis shall determine the Flash Protection Boundary and the personal protective equipment that people within the Flash Protection Boundary shall use.

The incident energy exposure level shall be based on the <u>working distance of the</u> <u>employee's face and chest areas</u> from a prospective arc source for the specific task to be performed.

NFPA 70E - 2004

If live parts are not placed in an electrically safe work conditions (i.e., for the reasons of increased or additional hazards or infeasibility per 130.1) work to be performed shall be considered energized electrical work and shall be performed by written permit only.

Preparing to Work Safely What do we need to know or do?

- Documented Procedures
- Know Fault Current Calculations
 - Bolted Fault
 - Arcing Fault
- Know Safe Approach Distance
- Know Arcing Fault Clearing Time
- Know the Incident Energy Exposure Calculations
- Know Hazard Risk Category

Bolted Short Circuit

Arcing Short Circuit

Test Rig for Bolted SC

Test Rig for Arching SC

Preparing to Work Safely What do we need to know or do?

- Documented Procedures
- Know Fault Current Calculations
- Know Safe Approach Distance
 - Limits of approach
 - Flash boundary
- Know Hazard Risk Category
- Know Arcing Fault Clearing Time
- Know the Incident Energy Exposure Calculations

Flash Boundary

 D_B arc flash boundary (mm) at incident energy of 5.0 (J/cm²)

$$\begin{array}{ll} D_B &= \left[4.184 \ C_f \ En \ (t/0.2) \ (610^{\times} \ / \ E_B) \ \right]^{1/\times} \\ & \text{where} \end{array} \\ \begin{array}{ll} E_B & \text{incident energy set } 5.0 \ (J/\text{cm}^2) \\ C_f & 1.0 \ for \ voltage \ above \ 1 \ kV \ and \\ 1.5 \ for \ voltage \ at \ or \ below \ 1 \ kV \\ t & \text{arcing duration in seconds} \\ & \text{x} & \text{distance exponent} \end{array}$$

X	Equipment Type	kV
1.473	Switchgear	<= 1
1.641	Panel	<= 1
0.973	Switchgear	> 1
2	all others	

Preparing to Work Safely What do we need to know or do?

- Documented Procedures
- Know Fault Current Calculations
- Know Safe Approach Distance
- Know Arcing Fault Clearing Time
 - Time current curves
 - Coordination studies
- Know the Incident Energy Exposure Calculations
- Know Hazard Risk Category

Preparing to Work Safely What do we need to know or do?

- Documented Procedures
- Know Fault Current Calculations
- Know Safe Approach Distance
- Know Arcing Fault Clearing Time
- Know the Incident Energy Exposure Calculations
 - NFPA 70E Method
 - IEEE 1584 Method

Know Hazard Risk Category

NFPA 70E

Annex D: Sample Calculation of Incident Energy and Flash Protection Boundary 1) NFPA 70 Method with 100% and 38% of

Bolted Fault

2) IEEE 1584 Empirical method

Use IEEE 1584 Calculations

Preliminary IEEE 1584 work used in NFPA 70E NFPA 70E equations limited to < 1000V IEEE 1584 equations expanded to 15,000V NFPA 70E 38% Arcing Fault Current is overly conservative and doesn't guarantee worst case incident energy.

Incident Energy

Energy Per Unit of Area Received On A Surface Located A Specific Distance Away From The Electric Arc, Both Radiant And Convective, in Units of cal/cm².

Incident Energy

log(En) = K1 + K2 + 1.081 log(Ia) + 0.0011 G

En	Incident energy (J/cm ²) normalized for 0.2s arcing duration and 610mm working distance
K1	 –0.792 for open configuration –0.555 for box configuration (switchgear, panel)
K2	0 for ungrounded and high resistance grounded systems -0.113 for grounded systems
la	Arcing fault current
G	gap between bus bar conductors in mm
solve	$En = 10^{\log En}$

Incident Energy

Incident Energy convert from normalized:

$E = 4.184 C_f En (t/0.2) (610^{\times} / D^{\times})$

Ε	incident energy (J/cm ²)
C_{f}	1.0 for voltage above 1 kV and
	1.5 for voltage at or below 1 kV
t	arcing duration in seconds
D	working distance
X	distance exponent

X	Equipment Type	kV
1.473	Switchgear	<= 1
1.641	Panel	<= 1
0.973	Switchgear	> 1
2	Cable. Open Air	

Preparing to Work Safely What do we need to know or do?

- Documented Procedures
- Know Fault Current Calculations
- Know Safe Approach Distance
- Know Arcing Fault Clearing Time
- Know the Incident Energy Exposure Calculations
- Know Hazard Risk Category

 NFPA 70E

Appropriate PPE

Incident Energy From (cal/cm2)	Incident Energy To (cal/cm2)	Hazard Risk Category	Clothing Description	Clothing Layers	Required Minimum Arc Rating of PPE (cal/cm2)	Notes
0.0	1.2	0	Untreated Cotton	1	N/A	
1.2	4.0	1	FR Shirt & Pants	1	4	
4.0	8.0	2	Cotton Underwear + FR Shirt & Pants	1 or 2	8	
8.0	25.0	3	Cotton Underwear + FR Shirt & Pant + FR Coverall	2 or 3	25	
25.0	40.0	4	Cotton Underwear + FR Shirt & Pant + Multi Layer Flash Suit	3 or more	40	

Preparing to Work Safely We need to know or do:

- Prepare to work safely
- Know Fault Current Calculations
- Know Safe Approach Distance
- Know Arcing Fault Clearing Time
- Know the Incident Energy Exposure Calculations
- Know Hazard Risk Category

But Why?

NFPA 70E - 2004

A flash hazard analysis shall be done in order to protect personnel from the possibility of being injured by an arc flash. The analysis shall determine the Flash Protection Boundary and the personal protective equipment that people within the Flash Protection Boundary shall use.

Ok, it's required

But How?

Break

Perform an Arc Flash Study Analysis

- Arc Flash Calculation Step Review
 - Determine System Modes of Operation
 - Calculate Bolted Fault Current at each Bus
 - Calculate Arcing Fault Current at each Bus
 - Calculate Arcing Fault Current seen by each Protective Device
 - Determine Trip Time for Each Protective Device based on Arcing Fault Current
 - Calculate Incident Energy at Working Distance
 - Calculate Arc Flash Boundary
 - Determine Required PPE

Bolted Fault Current

Arcing Fault Current

For bus voltage < 1 kV and 700A $\leq I_B \leq$ 106kA log (I_A) = K + 0.662 log (I_B) + 0.0966 V + 0.000526 G + 0.5588 V log (I_B) - 0.00304 G log (I_B)

where

log	log10
I _A	arcing fault current
Κ	–0.153 for open configuration and
	–0.097 for box configuration
I _B	bolted fault current – 3phase sym rms kA at the bus
V	bus voltage in kV
G	bus bar gap between conductors in mm

For bus voltage >= 1 kV and 700A $\leq I_B \leq 106$ kA log (I_A) =0.00402 + 0.983 log (I_B)

The above equations are reprinted with permission from IEEE 1584 *Copyright 2002*, by IEEE. The IEEE disclaims any responsibility or liability resulting from the placement and use in the described manner. From IEEE 1584 Copyright 2002 IEEE. All rights reserved.*

Identify Environment

- Working Distance
- Grounded / Ungrounded
- Equipment Type
 - Open Air Switchgear Panel / MCC Cable

Bus Bar Gap

15kV Swgr	152mm
5kV Swgr	104mm
LV Swgr	32 <i>mm</i>
Panel / MCC	25mm
Cable	13mm

There are Issues!

Arc Flash

Arcing Fault Clear Time

Arc Flash Incident

480 Volt System22,600 Amp Symmetrical FaultMotor Controller Enclosure6-Cycle Arcing Fault (0.1 sec)

Issues – Current Limiting

Arc Flash Incident

480 Volt System
22,600 Amp Symmetrical Fault
Motor Controller Enclosure
Current Limiting Device with < ½ Cycle operation (.0083 sec). Note that Arcing Fault must be in current limiting range.

Issues – Current Limiting

Issues – Fault Values

- •Maximum Faults used for Equipment Selection
- Minimum Faults Often Worst Case for Arc Flash Requires accurate utility fault contribution (not infinite source) Consider lowest pre-fault voltage Consider operating conditions with minimum motors Consider operating conditions with/without generators Consider stand-by operating modes

Minimum and Maximum Faults of Devices

CURRENT IN AMPERES

tcc5.tcc Ref. Voltage: 480 Current Scale x10⁴0 1Line001.drw

Issues – Long Trip Times

Issues - Faster Trip Times

Issues - Coordination

• Coordination Traditionally used for Equipment Protection and System Reliability

Arc flash requirements brings new safety focus to coordination studies looking at minimum faults and setting faster trip times. Faster trip times may cause more nuisance trips. Alternative protection schemes may gain popularity (differential protection, zone interlocking, light sensors, etc.)

Issues - Faster Trip Times

Issues - Coordination

Coordinated

Issues - Coordination

Miscoordination

An exercise to show mis-coordination

CURRENT IN AMPERES

tcc5.tcc Ref. Voltage: 480 Current in Amps x 1

ELECTRICAL ENGINEERING SOFTWARE

Check Upstream devices for mis-coordination

In Options Screen

Bus Name	Protective Device Name	Bus kV	Bus Bolted Fault (kA)	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)	Trip/ Delay Time (sec.)	Breaker Opening Time (sec.)	Grou	ind	Equip Type	p 9	Gap (mm)	Arc Flash Boundary (mm)	Working Distance (mm)	Incident Energy (J/cm2)	Required Protective FR Clothing Category
BUS-0001	PD-TX	0.48	6.00	4.80	3.39	0.175	0.000	No	•	PNL	▼	25	798	457	12.5	Category 1 (*N2)
BUS-0001	MaxTripTime @1000.0s	0.48	6.00	1.20	1.07	1000	0.000	No	•	PNL	•	25	62911	457	16160	Dangerous! (*N2) (*N9)
									•		▼					
BUS-0002	PD-TX	0.48	6.82	1.16	0.80	0.175	0.000	Yes	•	PNL	•	25	732	457	10.8	Category 1
BUS-0002	Main	0.48	6.82	5.66	3.93	0.5	0.000	Yes	•	PNL	▼	25	1299	457	27.7	Category 2
									•		▼					
BUS-0003	PD-0004	0.48	6.90	3.28	2.27	0.175	0.000	Yes	•	SWG	▼	25	752	457	10.4	Category 1
BUS-0003	PD-TX (Main)	0.48	6.90	1.16	0.80	0.175	0.000	Yes	•	SWG	▼	25	752	457	10.4 🤇	Category 1 (*N5)
BUS-0003	PD-0003	0.48	6.90	2.46	1.70	0.32	0.000	Yes	•	SWG	•	25	908	457	13.7	Category 1
Category 0: Untreated Cotton									•		•					(*N2) < 80% Cleared Faul <u>t Threshold</u>
Category 1: FR Shirt & Pants									•		•					(*N5) - Miscoordinated, Upstream Device Tripped
Category 2: Cotton Underwear + FR Shirt & Pants									•		•					(*N9) - Max Arcing Duration Reached

Issues – Parallel Contributions

Issues – Parallel Contributions

Time

Fault on 003-HV SWGR

Arc Flash Calculation on 003-HV SWGR

	Bus Name	Protective Device Name	Bus kV	Bus Bolted Fault (kA)	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)	Trip/ Delay Time (sec.)	Breaker Opening Time (sec.)	Groun	d	Equip Type	Ga (mr	Arc Flash Boundary (in)	Working Distance (in)	Incident Energy (cal/cm2)	Required Protective FR Clothing Category
6	003-HV SWGR	R7	13.8	7.96	0.48	0.47	0.083	0.000	Yes	•	SWG 🔻	15	3 24	18	1.6	Category 1
7	003-HV SWGR	R6	13.8	7.96	2.04	1.69	0.374	0.083	Yes	•	SWG 🖣	15	3 94	18	6.0	Category 2 (*N3)
8	003-HV SWGR	R2	13.8	7.96	3.66	3.04	0.546	0.133	Yes	•	SWG 🖣	15	3 132	18	8.3	Category 3 (*N3)
9	003-HV SWGR	R3	13.8	7.96	0.29	0.28	1.917	0.083	Yes	•	SWG 🖣	15	215	18	13	Category 3 (*N9)
10	003-HV SWGR	R M8	13.8	7.96	0.83	0.81	1.917	0.083	Yes	•	SWG 🗖	15	215	18	13	Category 3 (*N9)
11	003-HV SWGR	R M10	13.8	7.96	0.66	0.64	1.917	0.083	Yes	•	SWG 🖣	15	215	18	13	Category 3 (*N9)

Break

Issues – Line Side Activities

🖶 Arc Flash Evaluation - IEEE 1584-2004a

🖲 Detail View 🔿 Summary View	Bus Detail	Bus Label	Custom Label	Work Permit	Re-Run Study	Options	PPE Table	All C From Go To/Query
------------------------------	------------	-----------	--------------	-------------	--------------	---------	-----------	------------------------

	Bus Name	Protective Device Name	Bus kV	Bus Bolted Fault (kA)	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)	Trip/ Delay Time (sec.)	Breaker Opening Time (sec.)	Groun	ıd	Equip Type		Gap (mm)	Arc Flash Boundary (in)	Working Distance (in)	Incident Energy (cal/cm2)	Required Protective FR Clothing Category
1	001-UTILITY CO	R2 (R1)	69.0	4.63	0.45	0.45	1.031	0.133	Yes	•	AIR ,	•	153	491	18	890	Dangerous! (*N1) (*N2) (*N5)
2	001-UTILITY CO	MaxTripTime @2.0s	69.0	4.63	4.18	4.18	2	0.000	Yes	•	AIR	•	153	634	18	1480	Dangerous! (*N1) (*N2) (*N9)
3									•	•	•	•					
4	002-TX A PRI	R1	69.0	1.85	1.25	1.25	0.327	0.133	Yes	•	SWG •	•	153	189	18	132	Dangerous! (*N1)
5	002-TX A PRI	R2	69.0	1.85	0.60	0.60	0.586	0.133	Yes	•	SWG	•	153	201	18	150	Dangerous! (*N1)
6									•	•	•	•					
7	003-HV SWGR	R7 SEC (R7)	13.8	7.96	0.46	0.44	0.083	0.000	Yes	•	SWG	•	153	24	18	1.60	Category 1 (*N5)
8	003-HV SWGR	R6	13.8	7.96	2.04	1.69	0.374	0.083	Yes	•	SWG	•	153	94	18	5.99	Category 2 (*N3)
9	003-HV SWGR	R2	13.8	7.96	3.66	3.04	0.546	0.133	Yes	•	SWG	•	153	132	18	8.33	Category 3 (*N3)
10	003-HV SWGR	R3	13.8	7.96	0.29	0.28	1.917	0.083	Yes	•	SWG	•	153	215	18	13.4	Category 3 (*N9)
11	003-HV SWGR	R M8	13.8	7.96	0.83	0.81	1.917	0.083	Yes	•	SWG	•	153	215	18	13.4	Category 3 (*N9)
12	003-HV SWGR	R M10	13.8	7.96	0.66	0.64	1.917	0.083	Yes	•	SWG	•	153	215	18	13.4	Category 3 (*N9)
13										•	· ·	•					
14	004-TX B PRI	R3	13.8	7.77	7.48	7.29	0.016	0.083	Yes	•	SWG	•	153	27	18	1.79	Category 1
15	004-TX B PRI	F TX C	13.8	7.77	0.29	0.28	1.8	0.000	Yes	•	SWG •	•	153	39	18	2.53	Category 1
16										•	· ·	•					
17	005-TXD PRI	F 4	13.8	1.02	0.11	0.11	0.083	0.000	No	•	SWG •	•	153	3	18	0.23	Category 0
18	005-TXD PRI	F-M25	13.8	1.02	0.17	0.17	0.083	0.000	No	•	SWG •	•	153	3	18	0.23	Category 0
19	005-TXD PRI	R7 SEC	13.8	1.02	0.72	0.72	1.917	0.083	No	•	SWG •	•	153	72	18	4.62	Category 2 (*N9)
20									•	•	•	•					
21	006-TX3 PRI	R M4	13.8	7.88	0.77	0.75	0.083	0.000	Yes	•	SWG •	•	153	24	18	1.58	Category 1
22	006-TX3 PRI	R6	13.8	7.88	5.83	5.68	0.016	0.083	Yes	•	SWG -	•	153	28	18	1.81	Category 1
23	006-TX3 PRI	R SWG3	13.8	7.88	1.28	1.25	0.016	0.083	Yes	•	SWG •	•	153	28	18	1.81	Category 1
24										Ŧ		•					

Run Arc Flash Calculations

₹|

Detail View or Summary View

Detail View:

Detail View lists all protective devices at branches that contribute current to the faulted bus. This will vary from the Summary View only for buses that have multiple contributions.

Summary View:

If the Report Option is set to "Report Last Trip Device", the Summary View will list the last device to trip whereby the accumulated current tripped meets or exceeds the specified threshold percent (ie... when at least 80% of total fault current has cleared).

If the Report Option is set to "Report Main Device", the Summary View will list the device that carries the largest percentage of the fault contribution to the bus.

Ŧ	Are	c Flash Evaluation - 1	EEE 1584-20	004a												
	0	Detail View 💿 Sum	mary View	Bus	Detail	Bus La	abel	Custom	Label	Work Pe	rmit	Re-Run	n Study	Options	PPE	Table 💿 All 🕥 From Go To/Query
		Bus Name	Protective Device Name	Bus kV	Bus Bolted Fault (kA)	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)	Trip/ Delay Time (sec.)	Breaker Opening Time (sec.)	Ground	Equip Type	Gap (mm)	Arc Flash Boundary (in)	Working Distance (in)	Incident Energy (cal/cm2)	Required Protective FR Clothing Category
	1	BUS-0001	PD-0001	13.8	8.37	0.00	0.00	2	0.000	Yes 🔻	SWG 🗸	153	672	36	20.6	Category 3 (*N2) (*N9)
1	2	BUS-0002	PD-0001	4.16	2.22	2.22	2.21	0.141	0.000	Yes 🔻	SWG 🗸	104	9	36	0.31	Category 0
	3	BUS-0003	PD-0003	0.48	7.40	7.40	4.31	0.158	0.000	Yes 🔻	PNL 🔻	25	25	18	2.11	Category 1 (*N3)

Other Tabs

Bus Detail: Bus Detail generates a detailed label

Standard or Custom Label:

Generates standard and custom arc flash warning labels

Work Permit:

Produces energized work permits based on the calculated incident energy

Re-run Study: Allows one to re-run the study to display the most up to date results, if you have made changes in the table

Options Tab

itudy Options							
Standard Flash Boundary Calculati Above 1 kV, Trip Time <= Equipment Below 1 kV:	04a Edition on Adjustment = 0.1s: Use	s 1.2 cal/cm^; nt Eneroy Eq	C NF 2 (5.0 J/cr uation to C	PA 70E-200 n^2) for Bou)4 Edition ndary 💌	Pre-	OK Cancel Help Fault Voltage
Equipment <= 240 V: Max Arcing Duration: 10 Arcing Fault Tolerance	Report Cal Report as (Report as (Report as (Report Cal s	culated Value Category 0 if E Category 0 if 1 Category 0 if 4 culated Value Reduce Gr	is From E.g Bolted Fau Fransforme (10 kA an Is From E.g enerator 7	uations It Current < 1 er Size < 125 id TX Size < uations Synchronou	IO kA i kVA 125 kVA s Motor Fa	ult Contri	© English ic bution To
 Include Transformer F All Fuses As Current Limiting Standard Specified in Library 	Phase Shift Current Limiting Breakers Must be Specified in Library	300.0	% of Rate To Genera fotor Fault 5.0	ed Current al ators Contributior	iter 10.0	cyc To Sync slude if <	les hronous Motor 75.0 hp
Report Options Bus Prot. Load Side Prot. Line Side Bus + Line Side	More Incid and Flash I	ent Energy Boundary	La G	bels and Sur Report La Report Ma	mmary Viev Ist Trip Dev ain Device	v Report vice	Options —
Line Side + Load Side Include Line + Loa C Include Line Side	Fault Contribu ad Sides Contr Contributions (tion Options Ibutions July	☑ (Clea	Check Upstri red Fault Th	eam device reshold:	es for mis 30	-coordination % of Total

For Equipment < or = to 240v ac

In NFPA 70E, Article 130, Table 130.7 (7)(9)(a) with Notes 1 and 3 (for <10kA short circuit current available, the hazard /risk category required may be reduced by one) Pages 70E-29 thru 31.

The Table shows hazard /risk categories of 0 and 1, but all would be 0 given note 3 conditions.

In IEEE 1584, dated 2002, on page 6, fourth paragraph, last sentence – "Equipment below 240 V need not be considered unless it involves at least one 125 kVA or larger low impedance transformer in its immediate power supply."

Also on page 25, third paragraph, last sentence within the model and testing discussion – "The arc-flash hazard need only be considered for large 208 V systems: systems fed by transformers smaller than 125 kVA should not be a concern."

Cleared Fault Threshold

Cleared Fault Threshold, determines the portion of the Total Arcing Fault current at the Bus that needs to be interrupted by protective devices to extinguish the arc. Therefore the remaining portion of Arcing Fault current, if any, can not sustain the arc and will not be considered in the accumulated incident energy. Enter a value in percent of the total bus fault current, the default value is 80%, which means that the final arc fault trip time is based on when 80% or more of the total fault current at the bus has been cleared. In the Summary View, the last device to trip that reaches the cleared fault threshold is the only protective device that will be listed under the bus, and the data from the device will be used in the Bus Detail report and Bus Label. The cleared fault threshold value is also used to determine which branches are searched for mis-coordination.

Report Options

Bus option – The bus report assumes that the fault occurs at the equipment bus. If the bus has multiple contributions, the devices that trip each branch contribution will be listed in the order they trip, and incident energy will be accumulated until a significant percentage of the fault current has tripped. The significant portion is defined by the "Cleared Fault Threshold" percentage you specify.

Report Options

Protective Device Load Side option – The load side report applies a fault at the load side (To End) of each protective device whose line side (From End) is connected directly to a bus without having an impedance device between the bus and the protective device. The protective device being evaluated is the one that clears the fault. The fault current through the device will be used to calculate the arcing fault current and obtain the trip time from the TCC. You can then select to include Line + Load Sides Contributions (to represent both ends hot) in calculating the incident energy, or to include Line Side Contributions only in which case the load side contributions are not included (now working as if the load side is disconnected).

Protective Device Line Side option – The line side report applies a fault at the line side (From End) of each protective device whose load side (To End) is connected directly to a bus without having an impedance device between the bus and the protective device. You can then selected to include Line + Load Sides Contributions or to include Line Side Contributions only. The first case represent both ends hot, this occur if the main breaker failed to open, and the next upstream device is the one that must clear the fault. If there is more than one contribution when there is a fault at the line side, incident energy will be accumulated up to the fault contributions are not included and it is now working as if the load side is disconnected.

Report Options

Bus + Line Side option – This option combines the bus report option and the line side report option into one report. Calculated result for the bus and line side will be listed next to each other for easier comparison of worse case scenario. A special custom label is supplied by PTW to put both bus and line side results in one single label.

Scenario Manager

Scenario Manager	×
Scenarios:	
Base Project Minimum Faults	Activate and Exit
Maximum Faults	Clone
	(Rename
	Delete
	Promote to Base
	Exit
	<u>H</u> elp
When Changes are made to a Component in Promote Base Changes Only to Unmod Promote All Fields in the Base Compone Do Not Promote Base Changes to Scer	the Base Project ified Scenario Fields ent to All Scenarios

Use Scenario Manager to evaluate alternative operating scenarios for the power system, including minimum and maximum fault conditions, and proposed design changes.

Data Visualizer Screen

	T1 ~%1	■L 益 / イ ジ	· · · 📖 🛯 🖬 💳 .	ര്യം ന്ന് പ	፝ ጥ 7 ር	-0			Ħ	Y X 🗖 UPS
SWG R	Format:	AF Comparison		Compo	onents	Scenari	ios	Group By.		O Max
	<< <	> >>		Datab	olock	Query	/	Save Forma	at	 None
	1	Component	Field		Base Pro	ject	Propos	sed PD		
	2	E SWBD	Bus		E SWBD		E SWE	3D		
	3	E SWBD	Voltage (V)		480		480			
	4	E SWBD	ArcFault (kA)		16.28		16.28			
1.8 995	5	E SWBD	PD ArcFault (kA)		15.95		15.95			
	6	E SWBD	TripTime (s)		0.22		0.02			
	7	E SWBD	WorkDist (inches))	18		18			
	8	E SWBD	Energy (Cal/cm^2)	11.3		1.0			
	9	E SWBD	Flash Boundary (i	nches)	71		16			
01102	10	E SWBD	PPE Class		3		0			
	11	LP-A BUS	Bus		LP-A BU	S	LP-A B	US		
	12	LP-A BUS	Voltage (V)		208		208			
	13	LP-A BUS	ArcFault (kA)		2.50		2.50			
2.0.7%	14	LP-A BUS	PD ArcFault (kA)		2.50		2.50			
	15	LP-A BUS	TripTime (s)		2.00		0.15			
	16	LP-A BUS	WorkDist (inches))	18		18			
	17	LP-A BUS	Energy (Cal/cm^2)	14.7		1.1			
	18	LP-A BUS	Flash Boundary (i	nches)	83		17			
	19	LP-A BUS	PPE Class		3		0			
1.18 	20	SWBD	Bus		SWBD		SWBD			
	21	SWBD	Voltage (V)		480		480			
c	22	SWBD	ArcFault (kA)		19.66		19.66			
	23	SWBD	PD ArcFault (kA)		17.11		0.00			
- 3A	24	SWBD	TripTime (s)		0.36		0.05			
	25	SWBD	WorkDist (inches))	18		18			
	26	SWBD	Energy (Cal/cm^2)	22.5		3.5			
	27	SWBD	Flash Boundary (i	nches)	108		34			
	28	SWBD	PPE Class		3		1			

BOARD, LOOPS how ATRONA

PPE Table...

PPE Table

25 40 36 **R3** R.M8 Personnel Protection Equipment Table - 🗆 × ٠ Required Incident Energy Incident Hazard Category Category Clothing Minimum Arc Warning Head & Eye Hand & Arm Foot PPE From (J/cm2) Energy To Risk Clothing Description Background Foreground Notes Protection Layers Rating of PPE Label Text Protection Protection Others 1 Category (J/cm2) Color Color. (J/cm2)Hardhat + Voltage Rubber Polycarbonate Rated Soled 1 0.00 5.00 0 Untreated Cotton 1 N/A WARNING Face Shield + Electrical Leather Safety Glasses Gloves Boots Hardhat + Voltage Rubber Polycarbonate Rated Soled 2 WARNING 5.00 16.74 1 FB Shirt & Pants 1 16.74 Face Shield + Electrical Leather Safety Glasses Gloves Boots Hardhat + Voltage Rubber Cotton Underwear Polycarbonate Rated Soled 3 16.74 33.47 2 1 or 2 33.47 WARNING + Face Shield + Electrical Leather FR Shirt & Pants Safety Glasses Gloves Boots Hardhat + Voltage Rubber Cotton Underwear + Polycarbonate Rated Soled WARNING 4 33.47 104.60 3 FR Shirt & Pant + 2 or 3 104.6 Face Shield + Electrical Leather FR Coverall Safety Glasses Gloves Boots 4 ۲ Dangerous Catergory: Save Reset ОK Print Load Cancel Help **SKM** Power'Tools ELECTRICAL ENGINEERING SOFTWARE

Labels using the Bus Detail button

ocation Main Plant	nis Analysis, inc.						
IOD # SAMPLE	Date	08/05/02		Engineer e	SKM		
Bus BUS-0001			Category				
Rated Volts 13800	Rated Amp	s	Mf/Ty/Desc				
Main Device PD-0001		Device Setting	s				
UTLER-HAMMER, CX, 15.5	ikV Phase	40.0 Amps					
C-40C							
rame Sensor	Plug						
0 40							
	Arc Elash (alculation Data Sh	eet - IEEE 1584-200	4a		:	
Rolted Short Circuit Fault	8.4 kA 3Phas			Breaker Onen	Arcing Duration		
rcing Fault in Protective	Device		2 000 s	0.000 s	2 000 s	-	
rc/Equipment Type	Switchgear	Gap: 153	Grounded	0.0000	2.0000		
Arc Flash Boundary	672 inches	@ 1.2 cal/cm^2	2 - 2nd Dearee Burn	Boundary of Bare Skin			
Vorking Distance	36 inches	0		21	24	30	48
ncident Enerav		`2		34.81	30.57	24.60	15.5
PE Clothing Category	Category 3 -	 Cotton Underwear + Fl	R Shirt & Pant + FR Cov	verall, less than 80% Contril	oution Accumulated		1
j,	Deserved						
Jothina	Personner	Protection Equipme	Hazard Risk	Clothing Lavers	Arc Rating	Notes	
Description			Category		(cal/cm^2)		
Intreated Cotton			0	1	N/A		
R Shirt & Pants			1	1	4		
otton Underwear + FR Shirt	& Pants		2	1 or 2	8		
otton Underwear + FR Shirt	& Pant + FR Coverall & Pant + Multi Lavor Elach	Quit	3	2 or 3	25		
otton onderwear + i k Shint	Propo	. Drotoctiv		t Poquirod	40		
	Fioper	FIOLECTIVE	e Lyuipinen	t Nequileu			
05-024			<u>572-563 3</u>		1		

Labels using the Custom Label button

DANGER

NO SAFE PPE EXISTS

ENERGIZED WORK PROHIBITED

	367 inch	Flash Hazard Boundary
	124 cal/cm^2	Flash Hazard at 36 inches
	Dangerous!	No FR Category Found
	24000 VAC	Shock Hazard when cover is removed
101	3	Glove Class
	72 inch	Limited Approach
	31 inch	Restricted Approach
	10 inch	Prohibited Approach

Prohibited Approach

Location:

UTIL BUS

SKM Systems Analysis, Inc.

000-TX A PRI

1040 Manhattan Beach Blvd... Manhattan Beach, CA 90266 (800)232-6789

232874 Prepared on: 09/28/06 By: Job#: Engineer

Warning: Changes in equipment settings or system configuration will invalidate the calculated values and PPE requirements

PILIGRO

NO EXISTE EPP SEGURO

PROHIBIDO TRABAJO ENERGIZADO

367 pulgada	Flash Hazard Boundary			
124 cal/cm^2	Flash Hazard at 36 pulgadas			
Peligroso!	No se encontro Ninguna Categoria de RF			
24000 VAC	Shock Hazard when cover is removed			
3	Glove Class			
72 pulgada	Limited Approach			
31 pulgada	Restricted Approach			
10 pulgada	Prohibited Approach			
	and the second			

Location:

UTIL BUS

SKM Systems Analysis, Inc. 1040 Manhattan Beach Blvd.,

Manhattan Beach, CA 90266 (800)232-6789

Job#:	232874	Prepared on:	09/28/06	By:	Engineer
-------	--------	--------------	----------	-----	----------

Warning: Changes in equipment settings or system configuration will invalidate the calculated values and PPE requirements

SKM Power*Tools ELECTRICAL ENGINEERING SOFTWARE

SONCE TOOLS FOR WINDOWS

Labels using the Custom Label button

000-TX A PRI

Labels using the Custom Label button

Custom Label Design - [_SKM Sample 01 - Avery 6874 - Portrait]

Fields	► F	ïeld Layout Settings (Inc	hes) ——					
Bus Name		×: 0.05	Width:	1.1				
Prot Dev Name								
🗹 Bus Name + Prot Dev Name		Y: [1.1	Height:	0.175				
PPE Category		Show Field Border	- Backa					
PPE Description			_ Dacky	iounu opaque				
🗹 Incident Energy/Flash Haza		Show Unit	Clothin	ng Category Color				
🔽 Flash Hazard Distance			🔿 User 🛛	Define			·····	
Flash Hazard + Hazard Dist		-Text Format				*******		
🖌 Flash Hazard Boundary		Arial, 7, Bold		Eont				
Flash Hazard Range		1						
Glove Class		Vertical Alignment:	Тор	•	بر بر	**************************************		*************
🗹 Limited Approach		Horizontal Alignment:	Left	-		ì		
Restricted Approach			I LON					
Prohibited Approach		Text Wrapping						
Shock Hazard								
Bus Bolted Fault	▼							
		Show Label Border				ОК	Cancel	Help

000-TX A PRI

36

R7

x

25 60

ENERGIZED ELECTRICAL WORK PERMIT

PART I: TO BE COMPLETED BY THE REQUESTER:

Job/Work Order Number:

- Description of circuit/equipment/job location: 001-UTILITY CO
- (2) Description of work to be done:

(3) Justification of why the circuit/equipment cannot be de-energized or the work deferred until the next scheduled outage:

Requester/Title

Date

PART II: TO BE COMPLETED BY THE ELECTRICALLY QUALIFIED PERSONS DOING THE WORK:

(1) Detailed job description procedure to be used in performing the above detailed work:

(2) Description of the Safe Work Practices to be employed:

Flash Boundary	634 inch	Flash Hazard	1480 cal/cm^2	Working Distance	18 inches
Shock Hazard	69000 VAC	Limited Approach	96 inch	Glove Class	DANGER
		Restricted Approach	38 inch		
		Prohibited Approach	25 inch		
Requied PPE	Dangerous	No FR Category Found			

(3)	() Means employed to restrict the access of unqualified persons from the work area:					
(4)	Evidence of completion of a Job Briefing including discussion of any	job-related hazards:				
(5)	Do you agree the above described work can be done safely?	🗌 Yes 🔲 No	(If no, return to requester)			
	Electrically Qualified Person(s)	Date				

Produce

Work Permits

Check When

Γ

Γ

<u> </u>
SKM Power'Tools
ELECTRICAL ENGINEERING SOFTWARE

Electrically Qualified Person(s)

Date

One-line with Arc Flash Data

Role of Integrated Software

- Integrated Software allows you to:
 - Use NFPA 70E methods in determining PPE
 - Or IEEE 1584
 - Run scenarios (of options, conditions, modes of operations) and visualize their results simultaneously so good engineering judgments can be made and documented
 - Print Reports, Permits, and Labels
 - It becomes part of the on-going safety program

Costs of Not Performing Arc Flash Studies

- OSHA Fines
- Lost Productivity
- Medical Costs
- Legal Costs

So... why do I want to do studies by hand, with the calculator or tables?

Because I am from Texas And a full-fledged masochist **Have Great Evening!**

OTLATE 7

NGINEERING SOFTWARE